Adaptive Cruise Control: PID-Control Simulation
Version: v1.0 (2021/06)Author: Karl-Philipp Kortmann
Plant parameters: Vehicle $1$ (single-track, single axis model)
Mass
$m$
$\in[100, 5000]$
kg
Drag coef.
$c_\mathrm{w}$
$\in[0.2, 2]$
-
Frontal area
$A$
$\in[1, 16]$
m²
Rolling resistance coef.
$d_\mathrm{N}$
$\in[0.005, 0.35]$
-
Max. power
$P_\mathrm{max}$
$\in[1, 999]$
kW
Plant parameters: General
Roadway slope
$\alpha$
$\in[-45, 45]$
deg
Coef. of friction
$\mu$
$\in[0.1, 1.3]$
-
Signal-to-noise ratio of
distance measurement
$\mathrm{SNR_{dB}}$
$\in[0, 150]$
dB
Initial velocity vehicle $1$
$\dot{x}_1(0)$
$\in[0, 70]$
m/s
Initial distance
$\Delta x(0)$
$\in[0, 200]$
m
Update plant parameters
Reset plant parameters
Show plant schematic
Controller parameters:
Proportional gain
$K_p$
$|K_p|\in(0,99]$
-
Integral gain
$K_\mathrm{i}$
$|K_\mathrm{i}|\in(0,99]$
-
Derivative gain
$K_\mathrm{d}$
$|K_\mathrm{d}|\in(0,99]$
-
Integral time
$T_\mathrm{i}=\frac{K_\mathrm{p}}{K_\mathrm{i}}$
$|T_\mathrm{i}|\in(0,\infty)$
-
Derivative time
$T_\mathrm{d}=\frac{K_\mathrm{d}}{K_\mathrm{p}}$
$|T_\mathrm{d}|\in[0,100]$
-
Anti windup limit
$i_\mathrm{max}$
$\in[0.1, 100]$
-
Sample time
$\mathrm{d}t$
$\in[0.01, 1]$
s
Update controller parameters
Reset controller parameters
Show loop schematic
Live variables:
Distance setpoint
$\Delta x_\mathrm{sp}(t)$
$\in[1, 200]$
m
Velocity vehicle $2$
$\dot{x}_2(t)$
$\in[0, 70]$
m/s
(Re-)Start simulation
Stop and Reset simulation
Copyright © 2021 Karl-Philipp Kortmann (
MIT Licence
) |
contribute (GitHub)
|
impressum