Frequency Domain Model Selection for Servo Systems ensuring Practical Identifiability
- verfasst von
- Mathias Tantau, Lars Perner, Mark Wielitzka, Tobias Ortmaier
- Abstract
Physically motivated models of servo control systems with coupled mechanics are required for control design, simulation etc. Often, however, the effort of modelling prohibits these model-based methods in industrial applications. Therefore, all approaches of automatic modelling / model selection are naturally appealing. In this paper a procedure for model selection in frequency domain is proposed that minimizes the Kullback-Leibler distance between model and measurement while considering only those models that are practically identifiable. It aims at mechanical models of servo systems including multiple-mass resonators. Criteria for practical identifiability are derived locally from the sensitivity matrix which is calculated for different formulations of the equation error. In experiments with two industry-like testbeds the methodology proves to reveal the characteristic mechanical properties of the two setups.
- Organisationseinheit(en)
-
Institut für Mechatronische Systeme
- Externe Organisation(en)
-
Lenze SE
- Typ
- Aufsatz in Konferenzband
- Seiten
- 735-741
- Anzahl der Seiten
- 7
- Publikationsdatum
- 2020
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Artificial intelligence, Maschinenbau, Steuerung und Optimierung, Elektrotechnik und Elektronik, Computernetzwerke und -kommunikation, Angewandte Informatik
- Elektronische Version(en)
-
https://doi.org/10.15488/10397 (Zugang:
Offen)
https://doi.org/10.1109/ICMA49215.2020.9233569 (Zugang: Geschlossen)