Physics-Informed Neural Networks for Continuum Robots

Towards Fast Approximation of Static Cosserat Rod Theory

verfasst von
Martin Bensch, Tim David Job, Tim Lukas Habich, Thomas Seel, Moritz Schappler
Abstract

Sophisticated models can accurately describe deformations of continuum robots while being computationally demanding, which limits their application. Especially when considering sampling-based path planning, the model has to be evaluated frequently, which can lead to substantially increased computation times. We present a new approach to compute the entire shape of a tendon-driven continuum robot by a physics-informed neural network (PINN). The underlying physics is modelled with the Cosserat rod theory and incorporated into the PINN's loss function. The boundary values for the training are obtained from a reference model, solved by the shooting method. Our approach allows for a computation of the learned Cosserat rod model multiple orders of magnitude faster than a publicly available reference model. The median position deviation from the reference model lies below 1mm (0.5% of the simulated robot length) for each of the robot's 20 disks.

Organisationseinheit(en)
Institut für Mechatronische Systeme
Typ
Aufsatz in Konferenzband
Seiten
17293-17299
Anzahl der Seiten
7
Publikationsdatum
2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software, Steuerungs- und Systemtechnik, Elektrotechnik und Elektronik, Artificial intelligence
Elektronische Version(en)
https://doi.org/10.1109/ICRA57147.2024.10610742 (Zugang: Geschlossen)