Symplectic Discretiziation Methods for Parameter Estimation of a Nonlinear Mechanical System Using an Extended Kalman Filter

verfasst von
Daniel Beckmann, Matthias Dagen, Tobias Ortmaier
Abstract

This paper presents two symplectic discretization methods in the context of online parameter estimation for a nonlinear mechanical system. These symplectic approaches are compared to established discretization methods (e.g. Euler Forward and Runge Kutta) regarding accuracy and computational effort. In addition, the influence of the discretization method on the performance of an augmented Extended Kalman Filter (EKF) for parameter estimation is analyzed. The methods are compared with a nonlinear mechanical simulation model, based on a belt-drive system. The simulation shows improved accuracy using simplectic integrators in comparison to the conventional methods, with almost the same or lower computational cost. Parameter estimation based on the EKF in combination with the simplectic integration scheme leads to more accurate values.

Organisationseinheit(en)
Institut für Mechatronische Systeme
Typ
Aufsatz in Konferenzband
Seiten
327 - 334
Anzahl der Seiten
8
Publikationsdatum
07.2016
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Steuerungs- und Systemtechnik, Maschinelles Sehen und Mustererkennung, Artificial intelligence, Information systems
Elektronische Version(en)
https://doi.org/10.5220/0005973503270334 (Zugang: Offen)
https://doi.org/10.5220/0005973503270334 (Zugang: Unbekannt)