Symplectic Discretiziation Methods for Parameter Estimation of a Nonlinear Mechanical System Using an Extended Kalman Filter
- verfasst von
- Daniel Beckmann, Matthias Dagen, Tobias Ortmaier
- Abstract
This paper presents two symplectic discretization methods in the context of online parameter estimation for a nonlinear mechanical system. These symplectic approaches are compared to established discretization methods (e.g. Euler Forward and Runge Kutta) regarding accuracy and computational effort. In addition, the influence of the discretization method on the performance of an augmented Extended Kalman Filter (EKF) for parameter estimation is analyzed. The methods are compared with a nonlinear mechanical simulation model, based on a belt-drive system. The simulation shows improved accuracy using simplectic integrators in comparison to the conventional methods, with almost the same or lower computational cost. Parameter estimation based on the EKF in combination with the simplectic integration scheme leads to more accurate values.
- Organisationseinheit(en)
-
Institut für Mechatronische Systeme
- Typ
- Aufsatz in Konferenzband
- Seiten
- 327 - 334
- Anzahl der Seiten
- 8
- Publikationsdatum
- 07.2016
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Steuerungs- und Systemtechnik, Maschinelles Sehen und Mustererkennung, Artificial intelligence, Information systems
- Elektronische Version(en)
-
https://doi.org/10.5220/0005973503270334 (Zugang:
Offen)
https://doi.org/10.5220/0005973503270334 (Zugang: Unbekannt)