Neural Network based Tire-Road Friction Estimation Using Experimental Data

verfasst von
Nicolas Lampe, Karl-Philipp Kortmann, Clemens Westerkamp
Abstract

Knowledge of the maximum friction coefficient µ

max between tire and road is necessary for implementing autonomous driving. As this coefficient cannot be measured via existing serial vehicle sensors, µ

max estimation is a challenging field in modern automotive research. In particular, model-based approaches are applied, which are limited in the estimation accuracy by the physical vehicle model. Therefore, this paper presents a data-based µ

max estimation using serial vehicle sensors. For this purpose, recurrent artificial neural networks are trained, validated, and tested based on driving maneuvers carried out with a test vehicle showing improved results compared to the model-based algorithm from previous works.

Organisationseinheit(en)
Institut für Mechatronische Systeme
Identifikation & Regelung
Externe Organisation(en)
Hochschule Osnabrück
Typ
Konferenzaufsatz in Fachzeitschrift
Journal
IFAC-PapersOnLine
Band
56
Seiten
397-402
Anzahl der Seiten
6
ISSN
2405-8963
Publikationsdatum
2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Steuerungs- und Systemtechnik
Elektronische Version(en)
https://doi.org/10.1016/j.ifacol.2023.12.056 (Zugang: Offen)