Neural Network based Tire-Road Friction Estimation Using Experimental Data
- verfasst von
- Nicolas Lampe, Karl-Philipp Kortmann, Clemens Westerkamp
- Abstract
Knowledge of the maximum friction coefficient µ
max between tire and road is necessary for implementing autonomous driving. As this coefficient cannot be measured via existing serial vehicle sensors, µ
max estimation is a challenging field in modern automotive research. In particular, model-based approaches are applied, which are limited in the estimation accuracy by the physical vehicle model. Therefore, this paper presents a data-based µ
max estimation using serial vehicle sensors. For this purpose, recurrent artificial neural networks are trained, validated, and tested based on driving maneuvers carried out with a test vehicle showing improved results compared to the model-based algorithm from previous works.
- Organisationseinheit(en)
-
Institut für Mechatronische Systeme
Identifikation & Regelung
- Externe Organisation(en)
-
Hochschule Osnabrück
- Typ
- Konferenzaufsatz in Fachzeitschrift
- Journal
- IFAC-PapersOnLine
- Band
- 56
- Seiten
- 397-402
- Anzahl der Seiten
- 6
- ISSN
- 2405-8963
- Publikationsdatum
- 2023
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Steuerungs- und Systemtechnik
- Elektronische Version(en)
-
https://doi.org/10.1016/j.ifacol.2023.12.056 (Zugang:
Offen)