Gaussian process-based nonlinearity compensation for pneumatic soft actuators

verfasst von
Alexander Pawluchin, Michael Meindl, Ive Weygers, Thomas Seel, Ivo Boblan
Abstract

Highly compliant Pneumatic Soft Actuators (PSAs) have the potential to perform challenging tasks in a broad range of applications that require shape-adaptive capabilities. Achieving accurate tracking control for such actuators with complex geometries and material compositions typically involves many time-consuming and laborious engineering steps. In this work, we propose a data-driven learning-based control approach to address reference tracking tasks, incorporating self-adaptation in situ. We utilize a short interaction maneuver, recorded a priori, to collect the quasi-static data affected by severe hysteresis. Besides a linear feedback controller, we use two Gaussian process models to predict the feedforward control input to compensate for the nonlinearity in a one-shot learning setting. The proposed control approach demonstrates accurate tracking performance even under realistic varying configurations, such as alterations in mass and orientation, without any parameter tuning. Notably, training was achieved with only 25-50 s of experimental interaction, which emphasizes the plug-and-play capabilities in diverse real-world applications.

Organisationseinheit(en)
Institut für Mechatronische Systeme
Externe Organisation(en)
Berliner Hochschule für Technik (BHT)
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU Erlangen-Nürnberg)
Typ
Artikel
Journal
At-Automatisierungstechnik
Band
72
Seiten
440-448
Anzahl der Seiten
9
ISSN
0178-2312
Publikationsdatum
27.05.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Steuerungs- und Systemtechnik, Angewandte Informatik, Elektrotechnik und Elektronik
Elektronische Version(en)
https://doi.org/10.1515/auto-2023-0237 (Zugang: Geschlossen)