A Recursive Gaussian Process based Online Driving Style Analysis

verfasst von
Daniel Fink, Tobias Dues, Karl-Philipp Kortmann, Pascal Blum, Christoph Schweers, Ahmed Trabelsi
Abstract

Advanced driver assistance systems improve the driving comfort and contribute to enhance safety and energy efficiency in automotive traffic. However, whether these systems are actually used, depends on the driver's satisfaction with the system's way of driving. A promising approach to met the driver's individual preferences, is to personalize the assistance system. This paper presents a recursive Gaussian Process based analysis to determine the driver's preferences, during manual vehicle guidance, separately for various driving maneuvers. The recursive process enables an online capable analysis where no maneuver data has to be stored. In addition, an event detection approach to identify relevant driving situations is proposed. The gained information about the driver's preferences can be accessed by modern assistance systems to individually parameterize the driving behavior for example in curves or for general velocity adjustments at speed limit changes.

Organisationseinheit(en)
Institut für Mechatronische Systeme
Identifikation & Regelung
Externe Organisation(en)
IAV GmbH
Typ
Aufsatz in Konferenzband
Seiten
3187-3192
Anzahl der Seiten
6
Publikationsdatum
2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektrotechnik und Elektronik
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.23919/acc55779.2023.10156499 (Zugang: Geschlossen)