A Recursive Gaussian Process based Online Driving Style Analysis
- verfasst von
- Daniel Fink, Tobias Dues, Karl-Philipp Kortmann, Pascal Blum, Christoph Schweers, Ahmed Trabelsi
- Abstract
Advanced driver assistance systems improve the driving comfort and contribute to enhance safety and energy efficiency in automotive traffic. However, whether these systems are actually used, depends on the driver's satisfaction with the system's way of driving. A promising approach to met the driver's individual preferences, is to personalize the assistance system. This paper presents a recursive Gaussian Process based analysis to determine the driver's preferences, during manual vehicle guidance, separately for various driving maneuvers. The recursive process enables an online capable analysis where no maneuver data has to be stored. In addition, an event detection approach to identify relevant driving situations is proposed. The gained information about the driver's preferences can be accessed by modern assistance systems to individually parameterize the driving behavior for example in curves or for general velocity adjustments at speed limit changes.
- Organisationseinheit(en)
-
Institut für Mechatronische Systeme
Identifikation & Regelung
- Externe Organisation(en)
-
IAV GmbH
- Typ
- Aufsatz in Konferenzband
- Seiten
- 3187-3192
- Anzahl der Seiten
- 6
- Publikationsdatum
- 2023
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Elektrotechnik und Elektronik
- Ziele für nachhaltige Entwicklung
- SDG 7 – Erschwingliche und saubere Energie
- Elektronische Version(en)
-
https://doi.org/10.23919/acc55779.2023.10156499 (Zugang:
Geschlossen)