Learning-based Position and Stiffness Feedforward Control of Antagonistic Soft Pneumatic Actuators using Gaussian Processes

verfasst von
Tim Lukas Habich, Sarah Kleinjohann, Moritz Schappler
Abstract

Variable stiffness actuator (VSA) designs are manifold. Conventional model-based control of these nonlinear systems is associated with high effort and design-dependent assumptions. In contrast, machine learning offers a promising alternative as models are trained on real measured data and nonlinearities are inherently taken into account. Our work presents a universal, learning-based approach for position and stiffness control of soft actuators. After introducing a soft pneumatic VSA, the model is learned with input-output data. For this purpose, a test bench was set up which enables automated measurement of the variable joint stiffness. During control, Gaussian processes are used to predict pressures for achieving desired position and stiffness. The feedforward error is on average 11.5% of the total pressure range and is compensated by feedback control. Experiments with the soft actuator show that the learning-based approach allows continuous adjustment of position and stiffness without model knowledge.

Organisationseinheit(en)
Institut für Mechatronische Systeme
Typ
Aufsatz in Konferenzband
Publikationsdatum
2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Artificial intelligence, Maschinelles Sehen und Mustererkennung, Steuerungs- und Systemtechnik, Maschinenbau, Steuerung und Optimierung
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2303.01840 (Zugang: Offen)
https://doi.org/10.1109/RoboSoft55895.2023.10122057 (Zugang: Geschlossen)