Door opening and traversal with an industrial cartesian impedance controlled mobile robot

verfasst von
Marvin Stüde, Kathrin Nülle, Svenja Tappe, Tobias Ortmaier
Abstract

This paper presents a holistic approach for door opening with a cartesian impedance controlled mobile robot, a KUICA KMR iiwa. Based on a given map of the environment, the robot autonomously detects the door handle, opens doors and traverses doorways without knowledge of a door model or the door's geometry. The door handle detection uses a convolutional neural network (CNN)-based architecture to obtain the handle's bounding box in a RGB image that works robustly for various handle shapes and colors. We achieve a detection rate of 100% for an evaluation set of 38 different door handles, by always selecting for highest confidence score. Registered depth data segmentation defines the door plane to construct a handle coordinate frame. We introduce a control structure based on the task frame formalism that uses the handle frame for reference in an outer loop for the manipulator's impedance controller. It runs in soft real-time on an external computer with approximately 20 Hz since access to inner controller loops is not available for the KMR iiwa. With the approach proposed in this paper, the robot successfully opened and traversed for 22 out of 25 trials at five different doors.

Organisationseinheit(en)
Institut für Mechatronische Systeme
Typ
Aufsatz in Konferenzband
Seiten
966-972
Anzahl der Seiten
7
Publikationsdatum
05.2019
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software, Steuerungs- und Systemtechnik, Artificial intelligence, Elektrotechnik und Elektronik
Elektronische Version(en)
https://doi.org/10.1109/ICRA.2019.8793866 (Zugang: Geschlossen)