Temporal Object Tracking in Large-Scale Production Facilities using Bayesian Estimation

verfasst von
Karl Philipp Kortmann, Johannes Zumsande, Mark Wielitzka, Tobias Ortmaier
Abstract

Moving towards comprehensive digitalization of production facilities, it is critical to know the location of work pieces, charges, or other objects of interest that change location over time during production. For the case of a limited traceability of these objects, we first present a theoretical approach that performs a recursive Bayesian estimation of the object's location over time based on typical passage measurements in production (e. g. light barriers or RFID systems). The probabilistic method is based on a directed acyclic graph modeling the transfer and sojourn of the objects in the production network. Subsequently, the method is validated on simulated data while varying both size and measurement conditions of the process. The results show the benefit of the proposed method against a single estimation and demonstrate its potential for the application in real time scenarios.

Organisationseinheit(en)
Institut für Mechatronische Systeme
Typ
Konferenzaufsatz in Fachzeitschrift
Journal
IFAC-PapersOnLine
Band
53
Seiten
11125-11131
Anzahl der Seiten
7
ISSN
2405-8963
Publikationsdatum
2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Steuerungs- und Systemtechnik
Elektronische Version(en)
https://doi.org/10.1016/j.ifacol.2020.12.271 (Zugang: Offen)