Autonomous Iterative Motion Learning (AI-MOLE) of a SCARA Robot for Automated Myocardial Injection
- verfasst von
- Michael Meindl, Raphael Mönkemöller, Thomas Seel
- Abstract
Stem cell therapy is a promising approach to treat heart insufficiency and benefits from automated myocardial injection which requires highly precise motion of a robotic manipulator that is equipped with a syringe. This work investigates whether sufficiently precise motion can be achieved by combining a SCARA robot and learning control methods. For this purpose, the method Autonomous Iterative Motion Learning (AI-MOLE) is extended to be applicable to multi-input/multi-output systems. The proposed learning method solves reference tracking tasks in systems with unknown, nonlinear, multi-input/multi-output dynamics by iteratively updating an input trajectory in a plug-and-play fashion and without requiring manual parameter tuning. The proposed learning method is validated in a preliminary simulation study of a simplified SCARA robot that has to perform three desired motions. The results demonstrate that the proposed learning method achieves highly precise reference tracking without requiring any a priori model information or manual parameter tuning in as little as 15 trials per motion. The results further indicate that the combination of a SCARA robot and learning method achieves sufficiently precise motion to potentially enable automatic myocardial injection if similar results can be obtained in a real-world setting.
- Organisationseinheit(en)
-
Institut für Mechatronische Systeme
- Typ
- Konferenzaufsatz in Fachzeitschrift
- Journal
- IFAC-PapersOnLine
- Band
- 58
- Seiten
- 380-385
- Anzahl der Seiten
- 6
- ISSN
- 2405-8971
- Publikationsdatum
- 2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Steuerungs- und Systemtechnik
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2409.06361 (Zugang:
Offen)
https://doi.org/10.1016/j.ifacol.2024.11.067 (Zugang: Offen)